European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

EUROSENSORS in Freiburg, 7 - 9 September 2015

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 4: 1 July 2015 - 30 June 2016 (Ongoing Action)

LTCC, New Packaging Approach for Toxic Gas and Particle detection

Anita Lloyd Spetz

Linköping University & University of Oulu

Toxic substances needed to be measured: NO_x , NH_3 , SO_2 , CO, O_3 , PAH/VOC, PM_{10} , $PM_{2.5}$, PM_1

Two areas need more development and research within the sensor community: Packaging and Portable particle detectors

Outline

LTCC technology:

>Smart packaging of

>chemical gas sensors

Portable particle detectors

≻The Cell clinic

LTCC platform for sensor devices

LTCC processing of dedicated structures

Processing in one (fast) step possible

SiC-FET sensors wafer and mounting

LTCC platform for SiC–FET sensors

SiC-FET gas sensors

Cross section of depletion SiC-FET Gate sensing layer: porous catalytic metal, Pt, Ir

Molecule decomposition and reactions on the catatlytic metal charging of the gate area - a change in the current through the transistor

Temperature and sensing layer modulation enhances selectivity and sensitivity: H₂, CO, NH₃, SO₂, VOC 8 EAN COOPERATION IN SCIENCE AND TECHNOLOGY

VOC detection by SiC-FET sensors

Measurements performed by Donatella Puglisi, Linköping University at Saarland University in an STSM activity within the EuNetAir

Portable particle detectors

Miniaturized devices for the on-line monitoring of particles for

- Work places
- Public use

Giving information about particle

- number (concentration)
- Size
- Shape (needle like, asbestos like (branched needles)
- Content (CNTs containing Ni, Fe, Co has shown adverse effect in animal studies)

Since these parameters influence the adverse health effect of particles

Particle detector, commercial device

Measures PM1, PM2.5 and PM10

Portable black carbon detector for work places

H.S. Wasisto et al, Handheld personal airborne nanoparticle detector based on microelectromechanical silicon resonant cantilever, Microelectronic Engineering, 145 (2015) 96-103. (Braunschweig Germany)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOG

Gunter Hagen et al. Capacitive soot sensor, Bayreuth, Oral presentation Tuesday BS08-3

LTCC platform for Portable particle detectors

LTCC processing of dedicated structures for particle detectors

Finger electrodes, high aspect ratio: concentration size, content

Nicole Neubauer et al, Functionality based detection of airborne engineered nanoparticles in quasi real time: A new type of detector and a new metric, Ann. Occup. Hyg. 57 (2013) 842-852 (Karlsruhe)

Cell Clinic: Measurement of Toxic effect of particles on cells

Sensor chip, Cu leads, epoxy

Capacitive measurement principle

Packaged chip by epoxy molding

ENCE AND TECHNOLOGY

LTCC packaging for the cell clinic

Also poster presentation TP-F05 by Niina Halonen on Tuesday

LTCC packaging for the cell clinic

Development of microincubator

LTCC packaging of the chip potential as microincubator

LTCC packaged chip with electronics in the incubator

Development of microincubator

First electrical measurements with LTCC mounted sensorchip

Conclusions

- The LTCC (Low Temperature Co-fired Ceramic) facilitates
 as sensor platform for
 - SiC-FET Gas sensors
 - Portable nanoparticle detector
 - A microincubator

Applied Sensor Science at Linköping University

Prof. Anita Lloyd Spetz Associate Prof. Mike Andersson Assistant Prof. Donatella Puglisi Dr Christian Bur Hossein Fashandi, PhD student Lida Khavalezadeh, PhD student Peter Möller, research engineer

Laboratory for Measurement Technology, Saarland University

Prof. Andreas Schütze Dr Christian Bur Manuel Bastuck, PhD student

Microelectronics and Material Science Laboratories University of Oulu

Prof. Heli Jantunen Prof. Jyrki Lappalainen Prof. Krisztian Kordas Prof. Anita Lloyd Spetz Ass. Prof. Jari Juuti Ass. Prof. Jari Juuti Ass. Prof. Mike Andersson Dr Niina Halonen Dr Maciej Soboskinskij Joni Huotari, PhD student Joni Kilpijärvi, Master student

Maryland University, USA

Prof Elisabeth Smela Prof. Pamela Abshire Timir Datta, PhD student

Acknowledgement

- Grant support is acknowledged from:
- The VINN Excellence Center in Research & Innovation
 on Functional Nanostructured Materials (FunMat)
- The Swedish Agency for Innovation Systems (VINNOVA)
- The Swedish Research Council
- TEKES (Finland)
- Academy of Finland
- COST ACTION EuNetAir TD1105 (STSM)

